A Reliable Hybrid Adsorbent for Efficient Radioactive Cesium Accumulation from Contaminated Wastewater
نویسندگان
چکیده
Cesium (Cs) removal from nuclear liquid wastewater has become an emerging issue for safeguarding public health after the accident at the Fukushima Daiichi Nuclear Power Plant. A novel macrocyclic ligand of o-benzo-p-xylyl-22-crown-6-ether (OBPX22C6) was developed and successfully immobilized onto mesoporous silica for the preparation of hybrid adsorbent. The benzene ring π electron is the part of crown ether of OBPX22C6 for easy orientation of the macrocyclic compound for making the π electron donation with Cs complexation. The potential and feasibility of the hybrid adsorbent as being Cs selective was evaluated in terms of sensitivity, selectivity and reusability. The results clarified that the Cs removal process was rapid and reached saturation within a short time. Considering the effect of competitive ions, sodium (Na) did not markedly affect the Cs adsorption whereas potassium (K) was slightly affected due to the similar ionic radii. However, the oxygen in long ethylene glycol chain in OBPX22C6 was expected to show strong coordination, including Cs-π interaction with Cs even in the presence of the high amount of K and Na. Due to its high selectivity and reusability, significant volume reduction is expected as this promising hybrid adsorbent is used for Cs removal in Fukushima wastewater.
منابع مشابه
Removal of cesium through adsorption from aqueous solutions: a systematic review
Cesium radioactive isotopes (134Cs and 137Cs) are dangerous to human health due to their long half-life and high solubility in water. Nuclear experiments, wars, and nuclear plant accidents have been the main sources of Cs release into the environment. In recent years, several methods have been introduced for the elimination of Cs radioactive isotopes from contaminated wate...
متن کاملCorrection: Absorption of Radionuclides from the Fukushima Nuclear Accident by a Novel Algal Strain
Large quantities of radionuclides have leaked from the Fukushima Daiichi Nuclear Power Plant into the surrounding environment. Effective prevention of health hazards resulting from radiation exposure will require the development of efficient and economical methods for decontaminating radioactive wastewater and aquatic ecosystems. Here we describe the accumulation of water-soluble radionuclides ...
متن کاملDirect accumulation pathway of radioactive cesium to fruit-bodies of edible mushroom from contaminated wood logs
This paper presents the accumulation process of radioactive Cs in edible mushrooms. We here first report the direct accumulation pathway of radioactive Cs from contaminated wood logs to the fruit-bodies of shiitake mushrooms through the basal portion of the stipe. In this pathway, radioactive Cs is not transported through the hyphae. This pathway results in a high accumulation of radioactive Cs...
متن کاملSynergistically strengthened 3D micro-scavenger cage adsorbent for selective removal of radioactive cesium
A novel microporous three-dimensional pomegranate-like micro-scavenger cage (P-MSC) composite has been synthesized by immobilization of iron phyllosilicates clay onto a Prussian blue (PB)/alginate matrix and tested for the removal of radioactive cesium from aqueous solution. Experimental results show that the adsorption capacity increases with increasing the inactive cesium concentration from 1...
متن کاملAccumulation of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant in Terrestrial Cyanobacteria Nostoc commune
The Fukushima Daiichi Nuclear Power Plant accident released large amounts of radioactive substances into the environment and contaminated the soil of Tohoku and Kanto districts in Japan. Removal of radioactive material from the environment is an urgent problem, and soil purification using plants is being considered. In this study, we investigated the ability of 12 seed plant species and a cyano...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016